Brillouin optical time-domain reflectometry using up-conversion single-photon detector
نویسندگان
چکیده
منابع مشابه
217 km long distance photon-counting optical time-domain reflectometry based on ultra-low noise up-conversion single photon detector.
We demonstrate a photon-counting optical time-domain reflectometry with 42.19 dB dynamic range using an ultra-low noise up-conversion single photon detector. By employing the long-wave pump technique and a volume Bragg grating, we achieve a noise equivalent power of -139.7 dBm/√Hz for our detector. We perform the OTDR experiments using a fiber of length approximate 217 km, and show that our sys...
متن کاملUp-conversion single-photon detector using multi-wavelength sampling techniques.
The maximum achievable data-rate of a quantum communication system can be critically limited by the efficiency and temporal resolution of the system's single-photon detectors. Frequency up-conversion technology can be used to increase detection efficiency for IR photons. In this paper we describe a scheme to improve the temporal resolution of an up-conversion single-photon detector using multi-...
متن کاملSynthetic Spectrum Approach for Brillouin Optical Time-Domain Reflectometry
We propose a novel method to improve the spatial resolution of Brillouin optical time-domain reflectometry (BOTDR), referred to as synthetic BOTDR (S-BOTDR), and experimentally verify the resolution improvements. Due to the uncertainty relation between position and frequency, the spatial resolution of a conventional BOTDR system has been limited to about one meter. In S-BOTDR, a synthetic spect...
متن کاملLong-haul and high-resolution optical time domain reflectometry using superconducting nanowire single-photon detectors
In classical optical time domain reflectometries (OTDRs), for sensing an 200-km-long fiber, the optical pulses launched are as wide as tens of microseconds to get enough signal-to-noise ratio, while it results in a two-point resolution of kilometers. To both reach long sensing distance and sub-kilometer resolution, we demonstrated a long-haul photon-counting OTDR using a superconducting nanowir...
متن کاملPhoton-counting optical coherence-domain reflectometry using superconducting single-photon detectors.
We consider the use of single-photon counting detectors in coherence-domain imaging. Detectors operated in this mode exhibit reduced noise, which leads to increased sensitivity for weak light sources and weakly reflecting samples. In particular, we experimentally demonstrate the possibility of using superconducting single-photon detectors (SSPDs) for optical coherence-domain reflectometry (OCDR...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Communications
سال: 2016
ISSN: 0030-4018
DOI: 10.1016/j.optcom.2016.06.050